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Abstract. The probability distribution of random walks on one-dimensional fractal structures
generated by random walks (RW chains) and self-avoiding walks (SAW chains) ind-dimensional
space,Pd(r, t), is studied analytically in the caseξ ≡ r/t1/dw � 1, wheredw is the fractal
dimension of the random walk,〈r2(t)〉 ∼ t2/dw . It is shown that there exists an infinite hierarchy
of critical dimensions,d = dc = 4n+ 2, with n > 0 for RW chains andn > 1 for SAW chains,
for each term in theξ -expansion offd(ξ), the scaling part ofPd(r, t). Each transition is
characterized by its own logarithmic correction.

1. Introduction

Random fractals represent useful models for a variety of disordered systems found in nature.
In addition to their novel structural properties, fractals have attracted much attention in recent
years because of the interesting transport phenomena resulting from the self-similarity of
the conduction paths [1–8].

A great deal of interest has been devoted to the question of how the distribution of
random walks,Pd(r, t), representing the probability density that a walker is at distancer

from its starting point at timet = 0, is modified on fractal structures with respect to the
standard Gaussian form valid on regulard-dimensional systems, i.e.

Pd(r, t) ∼ t−d/2 exp(−constant× r2/t).

On fractals, the form ofPd(r, t) depends on the value of the scaling variableξ = r/t1/dw ,
wheredw denotes the fractal dimension of the random walk characterizing the time evolution
of the mean-square displacement of the walks,〈r2(t)〉 ∼ t2/dw , dw > 2. So far, much interest
has been devoted to the tail of the distribution, corresponding to the limitξ � 1 [2–8].
As a result of these works, it is now generally accepted thatPd(r, t) displays a stretched
Gaussian shape asymptotically, i.e.

Pd(r, t) ∼ ρ(r) t−ds/2 ξα exp(−constant× ξu) ξ = r/t1/dw � 1

where ρ(r) ∼ rdf−d is the density of the fractal structure,df the fractal dimension,
ds = 2df/dw the spectral dimension [1],α the power-law correction exponent [5–8],
u = dw/(dw − 1), andPd(r, t) is normalized according to

∫
dr rd−1 Pd(r, t) = 1.

The behaviour ofPd(r, t) around its maximum value, i.e. whenξ → 0, is much less well
known at present. The study of this ‘small-r ’ regime is interesting from a theoretical point
of view, since the form ofPd(r, t) in this case is determined by the exponents describing
the structure of the fractal on which diffusion takes place. This gives us a new perspective
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for learning about the structure of the fractal itself in those cases where it is not accurately
known.

In order to understand this point better, it is convenient to start considering the simplest
random fractals available, i.e. paths generated by random walks and self-avoiding random
walks (SAWs). The latter are useful models of linear polymers in a good solvent, and
the study of diffusion processes on them is also relevant for understanding the transport
properties of such linear polymers.

In this paper we consider diffusion processes on linear fractals generated by random
walks and self-avoiding random walks. Recently it has been suggested, by means of scaling
arguments and numerical simulations, that on linear fractals generated by random walks in
d dimensions (RW chains) [9]

Pd(r, t) ∼ ρ(r) t−1/2 (1− constant× ξd−2) ξ → 0

for all dimensionsd. More recently, it has been shown that this result is valid only for
dimensions 2< d < 5, and that

Pd(r, t) ∼ ρ(r) t−1/2 (1− constant× ξ4) ξ → 0

for d > 6 [10]. In addition, it was found that the small-ξ expansion ofPd(r, t) displays
logarithmic corrections for the terms of orderξdc−2 log(1/ξ), wheredc = 4n + 2, with
n > 0, play the role of critical dimensions in the expansion.

In this paper we extend those studies to the case of linear structures generated by self-
avoiding walks (SAW chains) and obtain the corresponding small-ξ expansion ofPd(r, t)
for arbitrary dimensions. We start in section 2 briefly reviewing the main results for random
walks on RW chains, presenting a different approach to that discussed in [10]. The method
is generalized and applied to the case of random walks on SAW chains in section 3. Finally,
in section 4 we summarize our main results.

2. The short-distance shape of random walks on random-walk chains

We consider one-dimensional structures generated by random walks ind-dimensional space.
Such structures are fractal with a mass fractal dimensiondf = 2, independently ofd (see
below). To study diffusion of particles along such one-dimensional paths, we assume that
the diffusing particles (random walkers) can move only along the structure which has been
created sequentially by the generating walks. Thus, although the structure can intersect itself
in space, the walkers just see a one-dimensional path. We denote such paths as random-walk
chains (RW chains).

2.1. Diffusion in`-space

Along the one-dimensional path, the probability distribution of walkers, at topological
(‘chemical’) distancè from their starting point after timet , P(`, t), subject to the initial
conditionP(`, 0) = δ(`), approaches the well known Gaussian distribution

P(`, t) = 2

(2πt)1/2
exp

(
−`

2

2t

)
(1)

normalized according to
∫∞

0 d` P (`, t) = 1. Thus, diffusion along the chain (i.e. iǹ-space)
is normal and〈`2(t)〉 = t .



Probability distribution of RWs on SAWs 3465

2.2. Diffusion in r-space

The time behaviour of the random walkers inr-space can easily be obtained from their
time behaviour in`-space and the spatial behaviour of the fractal substrate. First note
that for a RW-chain, the mean square displacement of the chain, averaged over all chain
configurations,〈r2(`)〉, behaves linearly with its length̀, i.e. 〈r2(`)〉 ∼ `. Since the mass
M of the chain is proportional to its length̀, one has thatM ∼ rdf , where the fractal
dimensiondf = 2, independently ofd. Now, along the chain the mean chemical distance
explored by the walker,〈`〉, scales with timet as 〈`〉 ∼ t1/2, from which we obtain the
scaling relation betweenr and t as

〈r2(`)〉 ∼ t2/dw

wheredw = 2df = 4 is the fractal dimension of the random walk inr-space.
To obtain the behaviour of the probability distribution inr-space, averaged over all

RW chain configurations,Pd(r, t), we note that it is related toP(`, t) by [3]

Pd(r, t) =
∫ ∞

0
d` 8(r, `) P (`, t) (2)

where8(r, `) is the probability that two sites on the chain at distancer in space are at
distancè along the chain†.

The probability densityPd(r, t) is normalized in the Euclidean space according to∫
dr rd−1 Pd(r, t) = 1. (3)

Another possibility is the normalization on the fractal set, i.e.∫ ∞
0

dr rdf−1P(r, t) = 1. (4)

Both distributions are simply related to each other by

Pd(r, t) = ρ(r) P (r, t) (5)

whereρ(r) ∼ rdf−d is the density of the fractal structure inr-space.
The structural function8(r, `) for RW chains which has been introduced in (2), can be

obtained straightforwardly by noting that the chemical distance` plays the role of the time
variable in (1), and one can immediately write

8(r, `) = Ad
(

1

2π`

)d/2
exp

(
− r

2

2`

)
` > r (6)

and 8(r, `) = 0 for ` < r, where Ad is a normalization factor such that∫∞
0 dr rd−1 8(r, `) = 1. Therefore, by inserting equations (1) and (6) in (2) we obtain

Pd(r, t) =
(

1

2π

)d/2 2Ad
(2πt)1/2

∫ ∞
r

d` `−d/2 exp

(
− r

2

2`

)
exp

(
−`

2

2t

)
. (7)

Now, by performing the transformationx = `/t1/2, equation (7) becomes

Pd(r, t) ∼ t−d/4
∫ ∞
ξ/t1/4

dx x−d/2 exp

(−ξ2

2x

)
exp

(−x2

2

)
(8)

† Actually, the function8(r, `) = 0 when` < `min, and`min = r when all RW-chain configurations are considered
(see [11]).
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where the scaling variableξ = r/t1/dw with dw = 4. Since the lower integration limitξ/t1/4

vanishes for fixedξ and t → ∞, which is the limit we are interested in here, we set it
equal to zero in what follows. After some minor manipulations we obtain

Pd(r, t) ∼ ρ(r) t−1/2 ξd−2
∫ ∞

0
dx x−d/2 exp

(−ξ2

2x

)
exp

(−x2

2

)
(9)

from which we can identify the probabilityP(r, t) according to (5) as,

P(r, t) ∼ t−1/2 fd(ξ) (10)

where the scaling functionfd(ξ) is defined as

fd(ξ) = ξd−2
∫ ∞

0
dx x−d/2 exp

(−ξ2

2x

)
exp

(−x2

2

)
. (11)

Equation (11) can be solved exactly [10]. However, since we are interested in the
asymptotic limit ξ → 0, we proceed differently than in [10] by performing suitable
expansions in the integrand of (11). The present approach yields essentially the same
results as those of [10], but are obtained in a more intuitive fashion, also allowing us to
study other linear structures for which the structural function8(r, `) is not known exactly
(see section 3).

We start by splitting the integrand in (11) into two parts as

fd(ξ) = ξd−2 [I1(ξ)+ I2(ξ)] (12)

where

I1(ξ) =
∫ ξ2/2

0
dx x−d/2 exp

(−ξ2

2x

)
exp

(−x2

2

)
(13)

and

I2(ξ) =
∫ ∞
ξ2/2

dx x−d/2 exp

(−ξ2

2x

)
exp

(−x2

2

)
. (14)

The idea is to calculateI1 andI2 in an approximate way in the caseξ → 0.
Consider I1 first. Since in this casex < ξ2/2, we make the approximation

exp(−x2/2) ∼= 1, and by settingy = x/(ξ2/2) we obtain

I1(ξ) ∼= ξ2−d A(d) (15)

whereA(d) = 2(d/2)−1
∫ 1

0 dy y−d/2 exp(−1/y) can be related to the incomplete gamma
function [12].

Now consider I2. Since in this casex > ξ2/2, we make the approximation
exp(−ξ2/2x) ∼= 1 and set the upper integration limit to 1, so that

I2 ≈
∫ 1

ξ2/2
dx x−d/2 exp

(−x2

2

)
. (16)

Now, by expanding the exponential in its power series we finally obtain

I2 ≈
∞∑
n=0

(−)n
2nn!

1

(2n+ 1− d/2)

[
1−

(
ξ2

2

)2n+1−d/2]
2n+ 1− d

2
6= 0. (17)

Logarithmic corrections, contained in the terms denoted byLdc(ξ), occur for dimensions
d = dc such that

d = dc = 4nc+ 2 nc > 0 (18)
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i.e. dc = 2, 6, 10, 14, 18, . . ., and the corresponding terms behave as

Ldc(ξ) =
2(−)nc

2ncnc!
ξdc−2 log

(
1

ξ

)
(19)

in agreement with the exact results [10]. In what follows we consider the cased = 1
separately, and summarize the results for higherd afterwards.

2.2.1. Dimension d = 1. The one-dimensional case is interesting, sincef1(ξ)→∞ when
ξ → 0. According to (12) and our approximate results (15) and (17), we immediately find

f1(ξ) ≈ 2 ξ−1 ξ → 0

which can be compared with the exact result obtained by direct integration of (14) (setting
ξ = 0 in the integral) as

f1(ξ) = 2−3/4 0( 1
4) ξ

−1 ∼= 2.1558ξ−1.

Thus, in one dimension the probability of random walksP(r, t) behaves, whenr → 0 and
t →∞, as

P(r, t) ∼ 1

t1/4

1

r
r → 0 and t →∞

reflecting the persistence of the walks in returning close to the origin. In other words,
for small but otherwise fixedr, i.e. r = ε, P(ε, t) ∼ t−1/4 for t → ∞, different to the
behaviour in`-space, i.e.P(` = 0, t) ∼ t−1/2.

2.2.2. Dimension d> 2. From equations (12), (15) and (17) it can be shown that when
ξ → 0:

2< d < 6: fd(ξ) ∼= ad + bdξd−2+O(ξ4)

6< d < 10: fd(ξ) ∼= ad + bdξ4+ cdξd−2+O(ξ8)

10< d < 14: fd(ξ) ∼= ad + bdξ4+ cdξ8+ edξd−2+O(ξ12)

14< d < 18: fd(ξ) ∼= ad + bdξ4+ cdξ8+ edξ12+ fdξd−2+O(ξ16)

etc. For the corresponding critical dimensions we find

d = 2: f2(ξ) ∼= constant2+ 2 ln(1/ξ)+O(ξ4)

d = 6: f6(ξ) ∼= constant6− ξ4 ln(1/ξ)+O(ξ4)

d = 10: f10(ξ) ∼= constant10+ constant′10ξ
4+ 1

4ξ
8 ln(1/ξ)+O(ξ8)

etc.
In summary, ford > 6 the scaling functionfd(ξ) behaves asymptotically as

fd(ξ) ∼ ad + bdξ4 ∼ exp(−constant× ξdw) ξ → 0 (20)

wheredw = 4, independently ofd.
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3. The short-distance shape of random walks on SAW chains

We now consider one-dimensional structures generated by self-avoiding random walks
(SAW) in d-dimensional space [13, 14]. Such structures, denoted here as SAW chains,
are fractal with a mass fractal dimensiondf = 1/ν = (d + 2)/3 whend < 4, anddf = 2,
whend > 4 (see, e.g., [2]).

Since SAW chains are topologically one-dimensional, diffusion is normal in`-space
and equation (1) still holds here, while inr-space, the diffusion exponentdw = 2df = 2/ν,
which becomes anomalous whend > 1†. The probability distributionPd(r, t) can be
obtained from (2), where8(r, `) is now not known exactly but is expected to obey the
scaling form [13, 14]

8(r, `) = 1

`νd
φ(r/`ν) (21)

whend > 2. The scaling functionφ(x) is expected to behave asymptotically as

φ(x) ∼ xg1 for x � 1 (22)

and

φ(x) ∼ xg2 exp(−c xδ) for x � 1. (23)

Here g1 = (γ − 1)/ν, δ = (1 − ν)−1, g2 = δ[d(ν − 1
2) − (γ − 1)] [13, 14], γ is the

enhancement exponent and is given approximately by [8]γ − 1 ∼= (4− d)/6, andc is a
constant. For spatial dimensionsd > 4, one hasν = 1

2 andγ = 1, thusg1 = g2 = 0, and
8(r, `) scales as in (6).

From equations (1) and (2), together with (21), (22) and (23), and by making the
substitutionx = `/t1/2, we can write

Pd(r, t) ∼ t−νd/2
∫ ∞
ξ/t(1−ν)/2

dx x−νd φ[(ξ1/ν/x)ν ] exp

(−x2

2

)
(24)

where we have takeǹmin = r, andξ ≡ r/t1/dw . Since we are interested in the asymptotic
behaviourt → ∞, for vanishingξ , the lower integration limit in (24) can be set equal
to zero (cf equation (9)). By making use in (24) of the asymptotic forms forφ(x) (cf
equations (22) and (23)), and employing (5), forP(r, t) we obtain

P(r, t) ∼ 1

t1/2
ξd−df [ξg1 I2(ξ) + ξg2 I1(ξ)] (25)

where

I1(ξ) ∼
∫ ξ1/ν

0
dx x−ν(d+g2) exp

[
−c

(
ξ1/ν

x

)νδ]
exp

(−x2

2

)
and

I2(ξ) ∼
∫ ∞
ξ1/ν

dx x−ν(d+g1) exp

(−x2

2

)
which generalize our previous results (10)–(14). Note that the exponentg1 occurs inI2 and
g2 in I1.

To obtain the leading behaviours ofI1 and I2 when ξ → 0, we proceed similarly as
in section 2. Let us start byI1, where we take exp(−x2/2) ∼= 1. By performing a simple
transformation we find

I1(ξ) ∼= ξdf−d−g2 Ad(g2) (26)

† In one dimension, both̀- andr-spaces are equivalent for SAWs, anddw = 2.
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whereAd(g2) =
∫ 1

0 dy y−ν(d+g2) exp(−cy−νδ). To estimateI2, we expand the exponential
in power series, and set the upper integration limit to one, i.e.

I2(ξ) ∼=
∫ 1

ξ1/ν
dx x−ν(d+g1)

(
1− x

2

2
+ 1

3!

(
x2

2

)2

− · · ·
)

(27)

which can be integrated immediately. Thus, altogetherP(r, t) behaves, whenξ → 0 and
1< d < 4, as

P(r, t) ∼ 1

t1/2

[
ad − bdξβ + cdξdw +O(ξ2dw)

]
(28)

where

β = d − df + g1

and

ad ∼= Ad(g2)+ 1

[ν(d + g1)− 1]
bd ∼= 1

[ν(d + g1)− 1]
+ cd

and

cd = 1

2 [3− ν(d + g1)]
.

We see that, in contrast to diffusion on RW chains,P(r, t) behaves regularly whend = 2,
i.e. d = 2 is no longer a critical dimension. Employing the above quoted expressions forν

andγ , we estimate

β ∼= 10
9 = 1.11 when d = 2

wheredw = 8
3 = 2.67 and

β ∼= 29
18 = 1.61 when d = 3

wheredw = 10
3 = 3.33.

Whend > 4, SAWs reduce to simple random walks, i.e.g1 = 0, df = 2, and the critical
dimensionsdc = 4n + 2, with n > 1, i.e. dc = 6, 10, 14, . . ., are recovered. We further
note that whend > 6, β = d − 2 > dw = 4, the coefficientcd < 0 andP(r, t) behaves
asymptotically as

P(r, t) ∼ 1

t1/2

[
ad − 1

d − 6
ξ4+ · · ·

]
d > 6 (29)

whenξ → 0.

4. Summary

In summary, we have studied the asymptotic form of random walks on random fractals,
such as paths generated by random walks (RW chains) and self-avoiding random walks
(SAW chains) ind-dimensional space. We have shown that the mean probability density of
random walks inr-space,P(r, t), normalized on the fractal, i.e.

∫∞
0 dr rdf−1 P(r, t) = 1,

behaves asymptotically whenξ = r/tdw → 0, as

P(r, t) ∼ 1

t1/2

[
1+ constant1 ξ

β + constant2 ξ
dw +O(ξ2dw)

]
β 6= dw

wheredw is the anomalous diffusion exponent,β = d−df+g1 anddf is the fractal dimension.
Here, g1 characterizes the asymptotic shape of the fractal structure whenr � `ν , where
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ν = 1/df . For RW chains,g1 = 0 for all dimensions, and for SAW chains,g1 = 0 for
d > 4.

The actual dependence ofP(r, t) on ξ , when ξ → 0, is determined by min(β, dw).
There exists a critical dimensiondc = 6 below whichβ < dw, and

P(r, t) ∼ t−1/2 (1− constant× ξβ) β < dw

whereβ depends ond, while whend > 6, dw = 4< β = d − 2, and

P(r, t) ∼ t−1/2 (1− constant× ξdw) dw < β

wheredw = 4 independently ofd. Logarithmic corrections occur whend = dc = 4n + 2,
with n > 0 for RW chains andn > 1 for SAW chains.
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