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Abstract. The probability distribution of random walks on one-dimensional fractal structures
generated by random walks (RW chains) and self-avoiding walks (SAW chaidsjimensional
space,P,;(r, t), is studied analytically in the casge = r/tl/"W « 1, whered,, is the fractal
dimension of the random walkz2(¢)) ~ %% It is shown that there exists an infinite hierarchy
of critical dimensionsyd = d; = 4n + 2, withn > 0 for RW chains ana > 1 for SAW chains,

for each term in thes-expansion off; (&), the scaling part ofP;(r,t). Each transition is
characterized by its own logarithmic correction.

1. Introduction

Random fractals represent useful models for a variety of disordered systems found in nature.
In addition to their novel structural properties, fractals have attracted much attention in recent
years because of the interesting transport phenomena resulting from the self-similarity of
the conduction paths [1-8].

A great deal of interest has been devoted to the question of how the distribution of
random walks,P,(r, t), representing the probability density that a walker is at distance
from its starting point at time = 0O, is modified on fractal structures with respect to the
standard Gaussian form valid on regudadimensional systems, i.e.

Py(r, 1) ~ %2 exp(—constantx r2/1).

On fractals, the form oP,(r, t) depends on the value of the scaling variable r/r%/%,
whered,, denotes the fractal dimension of the random walk characterizing the time evolution
of the mean-square displacement of the walk&(t)) ~ t%% d,, > 2. So far, much interest
has been devoted to the tail of the distribution, corresponding to the ginsit 1 [2—8].

As a result of these works, it is now generally accepted thdt, ¢) displays a stretched
Gaussian shape asymptotically, i.e.

Py(r,t) ~ p(r) t7%/2 £&* exp(—constantx £") E=r/tYM > 1

where p(r) ~ r%=“ is the density of the fractal structure; the fractal dimension,
ds = 2d;/d, the spectral dimension [1l]¢ the power-law correction exponent [5-8],
u = dw/(dw — 1), and P,(r, t) is normalized according t¢ dr =1 P (r, t) = 1.

The behaviour o, (r, ) around its maximum value, i.e. whén— 0, is much less well
known at present. The study of this ‘smallregime is interesting from a theoretical point
of view, since the form ofP,(r, ¢) in this case is determined by the exponents describing
the structure of the fractal on which diffusion takes place. This gives us a new perspective
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for learning about the structure of the fractal itself in those cases where it is not accurately
known.

In order to understand this point better, it is convenient to start considering the simplest
random fractals available, i.e. paths generated by random walks and self-avoiding random
walks (SAWSs). The latter are useful models of linear polymers in a good solvent, and
the study of diffusion processes on them is also relevant for understanding the transport
properties of such linear polymers.

In this paper we consider diffusion processes on linear fractals generated by random
walks and self-avoiding random walks. Recently it has been suggested, by means of scaling
arguments and numerical simulations, that on linear fractals generated by random walks in
d dimensions (RW chains) [9]

Py(r, 1) ~ p(r) t~Y? (1 — constantx £972) £—>0

for all dimensionsd. More recently, it has been shown that this result is valid only for
dimensions 2 d < 5, and that

Py(r, 1) ~ p(r) Y% (1 — constantx £%) £—>0

for d > 6 [10]. In addition, it was found that the sm&llexpansion ofP,(r, r) displays
logarithmic corrections for the terms of ordef—?log(1/¢), whered, = 4n + 2, with
n > 0, play the role of critical dimensions in the expansion.

In this paper we extend those studies to the case of linear structures generated by self-
avoiding walks (SAW chains) and obtain the corresponding stnalkpansion ofP,(r, t)
for arbitrary dimensions. We start in section 2 briefly reviewing the main results for random
walks on RW chains, presenting a different approach to that discussed in [10]. The method
is generalized and applied to the case of random walks on SAW chains in section 3. Finally,
in section 4 we summarize our main results.

2. The short-distance shape of random walks on random-walk chains

We consider one-dimensional structures generated by random walkdimensional space.

Such structures are fractal with a mass fractal dimensgjos 2, independently of! (see

below). To study diffusion of particles along such one-dimensional paths, we assume that
the diffusing particles (random walkers) can move only along the structure which has been
created sequentially by the generating walks. Thus, although the structure can intersect itself
in space, the walkers just see a one-dimensional path. We denote such paths as random-walk
chains (RW chains).

2.1. Diffusion in¢-space

Along the one-dimensional path, the probability distribution of walkers, at topological
(‘chemical’) distancef from their starting point after time, P (¢, t), subject to the initial
condition P (¢, 0) = §(¢), approaches the well known Gaussian distribution

2 0?
P, t) = @i exp<—2t> Q)

normalized according t9$0°° de¢ P(¢, 1) = 1. Thus, diffusion along the chain (i.e. {rspace)
is normal and(¢%(t)) = t.
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2.2. Diffusion in r-space

The time behaviour of the random walkers rirspace can easily be obtained from their
time behaviour in¢-space and the spatial behaviour of the fractal substrate. First note
that for a RW-chain, the mean square displacement of the chain, averaged over all chain
configurations,(r?(¢)), behaves linearly with its length i.e. (?(¢)) ~ £. Since the mass

M of the chain is proportional to its length one has that¥ ~ r%, where the fractal
dimensionds = 2, independently ofl. Now, along the chain the mean chemical distance
explored by the walker(¢), scales with times as (¢) ~ %2, from which we obtain the
scaling relation between andr as

(r2@) ~ 12

whered,, = 2d; = 4 is the fractal dimension of the random walkrirspace.
To obtain the behaviour of the probability distribution irspace, averaged over all
RW chain configurationspP,(r, ), we note that it is related t& (¢, ¢) by [3]

Py(r,t) = /OQ de o(r, L) P(L, 1) (2)
0

where @ (r, £) is the probability that two sites on the chain at distance space are at
distancet along the chaih
The probability densityP,(r, t) is normalized in the Euclidean space according to

/dr rt Pyr 1) = 1. 3)

Another possibility is the normalization on the fractal set, i.e.

/ dr r1P(r,1) = 1. (4)
0
Both distributions are simply related to each other by

Py(r,t) = p(r) P(r, 1) ®)

wherep(r) ~ r% is the density of the fractal structure irspace.

The structural functionb (r, £) for RW chains which has been introduced in (2), can be
obtained straightforwardly by noting that the chemical distahpéays the role of the time
variable in (1), and one can immediately write

1 \%? r2
D@, L) = Ay <271Z) eXp<_2ﬁ) L>r (6)

and ®(r,¢) = 0 for £ < r, where A; is a normalization factor such that
Jo~dr ri=t @(r, £) = 1. Therefore, by inserting equations (1) and (6) in (2) we obtain

1\7% 24, [ r2 %
P =(—) === —d/2 - -——). @
4 (ry 1) (271) (271:)1/2/,. de ¢ exp( 2€)exp< 2t) )

Now, by performing the transformation= ¢/, equation (7) becomes

[} 2 2
Py(r t) ~ 1744 dx x~%2 exp =+ exp( — 5 (8)
’ - 20 2

1 Actually, the function®d (r, £) = 0 when¢ < ¢min, and¢min = r when all RW-chain configurations are considered
(see [11)).
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where the scaling variable= r/tY/% with d,, = 4. Since the lower integration limét/s1/*
vanishes for fixedk andr — oo, which is the limit we are interested in here, we set it
equal to zero in what follows. After some minor manipulations we obtain

2 2

Py(r,t) ~ p(r) Y2 gd=2 /Oodx x~4/2 exp<_$) exp<_x> (9)
0

2x 2
from which we can identify the probability (r, ¢) according to (5) as,
P(rt) ~ 1712 f4(8) (10)
where the scaling functiorf, (¢) is defined as
_ £d=2 * —dJ2 —£2 —x?
fa®) =§ /0 dx x exp<2x> exp<2> . (11)

Equation (11) can be solved exactly [10]. However, since we are interested in the
asymptotic limit¢é — 0, we proceed differently than in [10] by performing suitable
expansions in the integrand of (11). The present approach yields essentially the same
results as those of [10], but are obtained in a more intuitive fashion, also allowing us to
study other linear structures for which the structural functiog, ¢) is not known exactly
(see section 3).

We start by splitting the integrand in (11) into two parts as

fa&) = €72 [1(®) + L)) (12)
where
B £2/2 a2 —g2 —x2
L&) = A dx x exp<2x) exp<2> (13)
and
o a2 _52 2
L&) = gz/zdx X exp(2x> exp<2>. (14)

The idea is to calculatg and I, in an approximate way in the cage— 0.
Consider I; first. Since in this casex < £2/2, we make the approximation
exp(—x?/2) = 1, and by settingy = x/(£2/2) we obtain
L) =7 A) (15)
where A(d) = 2¢/2-1 fol dy y~4/? exp(—1/y) can be related to the incomplete gamma
function [12].

Now considerI,. Since in this caser > £2/2, we make the approximation
exp(—£2/2x) = 1 and set the upper integration limit to 1, so that

1 —x2
L~ dx x9/2 exp<> ) (16)
£2/2 2
Now, by expanding the exponential in its power series we finally obtain
o (_yn 1 £2 2n+1—d/2 d
I~ 1—-| = 2n+1— - #0. 17
2 ;Z"n!(Zn—f-l—d/Z)[ (2 tl=57 (17)

Logarithmic corrections, contained in the terms denotedLhy&), occur for dimensions
d = d. such that

d=d.=4nc.+2 ne=0 (18)
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i.e.d. =2,6,10 14, 18, ..., and the corresponding terms behave as

1
%2 log( = 19
e log ¢ (19)

in agreement with the exact results [10]. In what follows we consider the £asel
separately, and summarize the results for highafterwards.

2
2%ep!

Ly (§) =

2.2.1. Dimension d = 1. The one-dimensional case is interesting, sifipgé) — oo when
& — 0. According to (12) and our approximate results (15) and (17), we immediately find

fig)~2¢&7t £—>0

which can be compared with the exact result obtained by direct integration of (14) (setting
& =0 in the integral) as

fiE) =234 (%) £t = 21558: 7%

Thus, in one dimension the probability of random walké, ) behaves, when — 0 and
t — 00, as

P 11 0 d
(r, 1) 7 r— and r — oo
reflecting the persistence of the walks in returning close to the origin. In other words,

for small but otherwise fixed, i.e.r = ¢, P(e,t) ~ t~%* for t — oo, different to the
behaviour in¢-space, i.eP(¢ =0, 1) ~ Y2,

2.2.2. Dimension ¢ 2. From equations (12), (15) and (17) it can be shown that when
&§—0:

2<d <6 fi(E) = ag+ bE? + OEY
6<d <10 f4(8) = aq+ bag* + ci£72 + O(E®)
10 <d < 14: £1(8) = ag + bat* + ca€® + eq&92 + O

14 <d < 18: f4(5) = ag + bat* + cat® + eqg + f,6972 + O£

etc. For the corresponding critical dimensions we find

d=2: f2(8) = constart + 2In(1/£) + O(¢%)

d =6: fe(€) = constarg — £%In(1/€) + O

d = 10: f10(§) = constanty + constariyg® + 1£8In(1/¢) + O&®)
etc.

In summary, ford > 6 the scaling functiory, () behaves asymptotically as
fa(&) ~ ag + ba&* ~ exp(—constantx &%) £—>0 (20)

whered,, = 4, independently ofl.
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3. The short-distance shape of random walks on SAW chains

We now consider one-dimensional structures generated by self-avoiding random walks
(SAW) in d-dimensional space [13, 14]. Such structures, denoted here as SAW chains,
are fractal with a mass fractal dimensign= 1/v = (d + 2)/3 whend < 4, andd; = 2,
whend > 4 (see, e.g., [2]).

Since SAW chains are topologically one-dimensional, diffusion is normalspace
and equation (1) still holds here, while iaspace, the diffusion exponedy, = 2d; = 2/v,
which becomes anomalous whe@n> 1f. The probability distributionP,(r, ) can be
obtained from (2), whereb(r, £) is now not known exactly but is expected to obey the
scaling form [13, 14]

Q0= 1 9/ 21
whend > 2. The scaling functio (x) is expected to behave asymptotically as

¢(x) ~ x5 for x <1 (22)
and

P (x) ~ x5 exp(—c x%) for x > 1. (23)

Heregi = (y —D/v, § = 1 —v)7Y go = 8[d(v — 3) — (¥ — D] [13, 14], y is the
enhancement exponent and is given approximately by[8]1 = (4 — d)/6, andc is a
constant. For spatial dimensiods> 4, one hay = % andy = 1, thusg; = g» = 0, and
®(r, £) scales as in (6).

From equations (1) and (2), together with (21), (22) and (23), and by making the
substitutionx = ¢/t%/?, we can write

00 _ .2

Py(r,1) ~17"4/2 / de x ™" ¢[(6""/x)"] exp (x) (24)
g/;(lfv)/z 2

where we have takefy,, = r, and& = r/t/%. Since we are interested in the asymptotic

behaviourr — oo, for vanishingé, the lower integration limit in (24) can be set equal

to zero (cf equation (9)). By making use in (24) of the asymptotic formsgfor) (cf

equations (22) and (23)), and employing (5), ¢, t) we obtain

1
P~ 5 N [E8 L(§) + E% I(8)] (25)
where
gy é;l/v vé _x2
(&) ~ dx x~V@+s2) exp[—c( ) ] exp()
0 X 2
and
oo _x2
L&) ~ | dyxv@re exp()
Sl/” 2

which generalize our previous results (10)-(14). Note that the expgretcurs inl, and
g2 in 1.

To obtain the leading behaviours &f and I, when&é — 0, we proceed similarly as
in section 2. Let us start by;, where we take exp-x2/2) = 1. By performing a simple
transformation we find

11(E) Z 9178 Ay(gp) (26)

T In one dimension, botli- andr-spaces are equivalent for SAWS, adig = 2.
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where A, (go) = fol dy y~vU+s) exp(—cy~"?%). To estimatel,, we expand the exponential
in power series, and set the upper integration limit to one, i.e.

1 2 1 /52 2
I o~ —v(d+g1) 1— L o — .. 27
26) = || dex ( 2+$<2) ) (27)

which can be integrated immediately. Thus, altogethér, r) behaves, whey — 0 and
1<d <4, as

1

Pr,1) ~ 5 [aa = bat” + cat™ + OE*)] (28)
where

B=d—di+g
and

= Ay(gr) + ! by = 1 +

a) = _— = ——————2 C,

R N D E A ‘T hd+en-1
and

1
S 2[3-vd+g]
We see that, in contrast to diffusion on RW chaifigr, r) behaves regularly wheh= 2,

i.e.d = 2 is no longer a critical dimension. Employing the above quoted expressions for
andy, we estimate

p= P =111 whend =2

whered,, = § = 2.67 and
=2 =161 whend =3

whered,, = ¥ = 3.33.

Whend > 4, SAWSs reduce to simple random walks, ige.= 0, d; = 2, and the critical
dimensionsd, = 4n + 2, withn > 1, i.e.d. = 6, 10,14, ..., are recovered. We further
note that whenl > 6, 8 = d — 2 > dy, = 4, the coefficient;, < 0 and P(r, r) behaves
asymptotically as

Cd

1 1

whené — 0.

4. Summary

In summary, we have studied the asymptotic form of random walks on random fractals,
such as paths generated by random walks (RW chains) and self-avoiding random walks
(SAW chains) ind-dimensional space. We have shown that the mean probability density of
random walks in--space,P(r, t), normalized on the fractal, i.gy" dr r%=* P(r,1) = 1,
behaves asymptotically wheén= r/t™ — 0, as

P(r,t) ~ tl% [1+ constant &# + constant £% + O(&%H)] B # dy

whered,, is the anomalous diffusion exponefit= d —d;+g1 andd; is the fractal dimension.
Here, g; characterizes the asymptotic shape of the fractal structure whene”, where
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v = 1/d;. For RW chains,g; = 0 for all dimensions, and for SAW chaing; = 0 for
d > 4.

The actual dependence &f(r,7) on &, whené — 0, is determined by mi@B, dy).

There exists a critical dimensiafy = 6 below whichg < d,, and

P(r, 1) ~ Y2 (1 — constantx ) B < dy

where 8 depends orl, while whend > 6,dy =4 < 8 =d — 2, and

P(r,t) ~ t~Y? (1 — constantx &%) dw < B

whered,, = 4 independently ofl. Logarithmic corrections occur wheh= d. = 4n + 2,
with n > 0 for RW chains and: > 1 for SAW chains.
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